

מגדל דוד | המוזיאון לתולדות ירושלים Tower of David | Museum of the History of Jerusalem برج داود | متحف تاريخ أورشليم القدس

National Steering Committee for Earthquake Preparedness MINISTERO PER I BENI E LE ATTIVITÀ CULTURALI

Quantitative assessment of archeo-earthquakes from back analysis of historic masonry structures

Ronnie Kamai and Yossef H. Hatzor

Dept. of Structural Engineering, Dept. of Geological and Environmental Sciences Ben-Gurion University of the Negev, Beer-Sheva, Israel

This research is funded by Israel Science Foundation through contract No. 556/08

Acknowledgements

Prof. Yossef H. Hatzor

Dr. Gony Yagoda-Biran

CULTURAL HERITAGE SITES AS RECORDERS OF HISTORIC SEISMICITY

Field Evidence of Seismically Driven Failures in Historic Masonry Structures

Talk Outline

- Research Method the numerical, discrete element, Discontinuous Deformation Analysis (DDA) method: Verifications and validations.
- Constraining Paleo-PGA by back-analysis of stone displacements in arches and toppling of columns in historic masonry structures.
- Identifying Archeo-earthquakes in the region with consideration of local site effects
- Defficiencies in seismic-hazard evaluation in Israel

DISCONTINUOUS DEFORMATION ANALYSIS: VERIFICATIONS AND VALIDATIONS

Single Face Sliding

Analytic φ=22° Δ DDA 10 φ=30° Ο **Input Motion** DDA Analytic notion (m/s²) φ=35° Analytic DDA Input 5 0 -5 Dynamic sliding under × gravitational load only was 12 Displacement of upper block (m) _*K* studied originally by Mary McLaughlin in her PhD thesis 8 $\Delta - \Delta - \Delta - \Delta$ (1996) (Berkeley) and \mathcal{A} consequent publications with 4 Sitar and Doolin 2004 - 2006. Sinusoidal input first studied by 0. relative error (%) Hatzor and Feintuch (2001), 100 IJRMMS. Improved 2D solution 10 presented by Kamai and Hatzor 1 (2008), NAG. Ning and Zhao 0.1 (2012), *NAG* (From NTU) 0.01 recently published a very 0 1 2 3 4 5 6 detailed study of this problem. Time (sec)

Kamai and Hatzor: Back analysis of historic masonry structures. January 20th, 2014, Tower of David, Jerusalem.

7

Dynamic Block Rocking

Analytical solution proposed by: Makris and Roussos (2000), *Geotechnique*.

DDA validation with applications: Yagoda-Biran and Hatzor (2010), *EESD*.

Kamai and Hatzor: Back analysis of historic masonry structures. January 20th, 2014, Tower of David, Jerusalem.

Kamai and Hatzor: Back analysis of historic masonry structures. January 20th, 2014, Tower of David, Jerusalem.

Mamshit - Nabatean to Byzantine Period

Generation of DDA mesh

- heterogeneous wall material lines define different parameters for arch and wall
- fixed points in foundation block

• measurement point in keystone Kamai and Hatzor: Back analysis of historic masonry structures. January 20th, 2014, Tower of David, Jerusalem.

Influence of wall stiffness $f = 1.5 \text{ Hz}, A = 0.5 g, E_{arch} = 17 \text{ GPa}$

Influence of overburden (h) f = 1.5 Hz, A = 0.5 g

Influence of input motion amplitude (A) f = 1 Hz

Real Input motion, the M = 7.1 Nuweiba earthquake

Our Best Estimate Motion Parameters: Duration ~ 10 sec., f = 1.5 Hz, $a_{peak} = 0.5$ g

 $V_{keyblock}$ = -3 cm

Avdat – Nabatean to Byzantine Period

Displacement of 5 blocks from wall

Best fit to field evidence after 10sec obtained with: f = 3 Hz, A = 1g

Susita - Byzantine Period

DDA model for free standing column

Optimizing contact spring stiffness

Kamai and Hatzor: Back analysis of historic masonry structures. January 20th, 2014, Tower of David, Jerusalem.

Frequency dependent PGA results 1 sinusoidal input cycle

Frequency dependent PGA results 3 sinusoidal input cycles

Yagoda-Biran and Hatzor (2010), EESD

Scaled earthquake component

Nimrod Fortress: Ayyubid - Crusaders Period

Asymmetric block displacement in arch

DDA Model

The model:

- boundary block on right represents geographical asymmetries
- fixed points in boundary block
- measurement points in five of the arch stones

'Best fit' to field evidence obtained with: f = 2 Hz, A = 1g, $E_2/E_1 = 10^4$, h > 0, t = 40 s.

IDENTIFYING ARCHEO-EARTHQUAKES: THE CASE OF THE WESTERN WALL TUNNELS, JERUSALEM

The great causeway discovered in the WWT

Back analysis of mapped stone displacement

1183 DDA sensitivity analyses changing:

- Overload conditions: from surficial structure (old) to buried structure (today).
- Selective overload removal from keystones to simulate local erosive patterns
- 3. Friction angle of block interfaces
- PGA of input earthquake (the M=7.1 Nuweiba E.Q.

Required PGA for best fit solution: 1.5g – 2g

Note: the results are for the <u>top</u> of the structure! namely, the obtained threshold PGA includes both structural amplifications and local site effects.

Candidate Historic Earthquakes

Bulletin of Historic Earthquakes

	Date	Location	ML	Distance to Jerusalem (km)	PGA (g) Ben- Menahem (1991)				
	306 AD	Off coast Sur	7.1	170	0.06				
	362	31.3N 35.6E	6.7	63	0.14				
	447	40.2N 28E	7.5	1100	0.0009				
	528	36.2N 36.1E	7.1	500	0.007				
	746	32N 35.5E	7.3	38	0.48				
	859	36.2N 36.1E	8	500	0.02				
	1032	Off coast Gaza	6.9	130	0.07				
	1068	Off coast Yavne	7	80	0.15				
	1070	Arava	6	170	0.016				
A discrepancy by a factor of 10 between numerically computed									
and empirically constrained PGA values!!									

1170	35.9N 36.4E	7.5	470	0.014	

Data From: Ben-Menahem, A., 1991, Four thousand years of seismicity along the Dead Sea Rift: *J. Geophys. Res.*, v. 96, no. B12, p. 20,195-20,216.

The significance of local site effect

As a rulo of		parameters	
thumb	Layer	density (kg/m ³)	shear wave velocity (m/sec)
$\rho_{R} \cdot v_{R}$	Bedrock	2500	2000 - 3000
$A_0 = \frac{\rho_s \cdot v_s}{\rho_s \cdot v_s}$	archeological fill (adopted alluvium values)	1800	100 - 500

From Gony Yagoda Biran, Ph. D. Thesis , 2013 (recently completed)

Needed research

- Improve seismic hazard evaluation in Israel:
 - Develop updated Ground Motion Prediction Equation (GMPE) for Israel, either by adjusting NGA or by supplementing database with synthetic earthquakes
 - Site response studies
 - Put instruments on SOIL and not only ROCK
 - Vertical and horizontal arrays
 - Evaluate linear and nonlinear soil response for input into GMPE

مدتا تا متابعا إ لمتابعا الماتات بالعائم Tower of David | Museum of the History of Jerusalem برج داود | متحف تاريخ أورشليم القدس

MINISTERO PER I BENI E LE ATTIVITÀ CULTURALI

ועדת ההיטי הבין-משרדית להיערכות לרעידות אדמה National Steering Committee for Earthquake Preparedness

